

A mixed-methods study into the role of the **time variable** in the **construct** of computeradministered **C-Tests** in three languages

Anastasia Drackert, <u>Anna Timukova,</u> Franziska Möller, Darja Felberg, Ilka Plesse

Funded by DEFG Deutsche Forschungsgemeinschaft German Research Foundation project number 462766474

Overview

- Object of the study: C-Test & its construct
- Study objectives, design, RQs & methodology
- Results of the pilot study (ENG)
- Towards the main study

C-Test

C-Test: Construct

- Modification of the cloze test (Raatz & Klein-Braley, 1982)
- Principle of reduced redundancy: higher proficiency less redundancy needed
- Integrative measure of global language proficiency: "objective, highly reliable and very economical" (Grotjahn, 2013, p. 181)
- Lower-level skills (lexical, morphological, syntactic and orthographic) & higher-level skills (awareness of intersentential relationships, metacognitive strategies, global reading skills etc.)
- "Fluid construct": Aspects of construct tapped by C-Test depend on text difficulty & learner proficiency (Sigott, 2004)

What about the **time**?

C-Test: Time & the construct

- Generous time limit of 5 min per C-Test test (e.g. Eckes, 2010; Harsch & Harting, 2015; Porsch & Wilden, 2017)
- 1. Reduced time limit:
 - a. Reduced & constant for each C-Test text:

Almost all knowledge about C-Test construct based on tests with generous time limit

- L1 research on intelligence in the field of psychology (e.g. Raatz, 2002; Wockenfuß, 2008; Wockenfuß & Raatz, 2014)
- L2 research (e.g. Bisping, 2006; Drackert & Felberg, 2019)
- b. Partially variable (e.g. Reichert et al., 2010)
- C. Drastically reduced & text-specific = Speeded C-Test (e.g. Forthmann et al., 2019; Gortjahn et al., 2010; Heine, 2017; Zimmermann, 2019)

Speeded C-Test: Hypotheses about the construct

- Grotjahn (2010):
 - Canonical C-Test (5 min per text) measures the amount of learners' declarative and procedural knowledge
 - speeded C-Test additionally measures the degree of automaticity of their skills and the efficiency of information processing (cf. p. 285)
- Hypotheses:
 - S-C-Test would correlate higher with measures of listening comprehension and speaking skills than a canonical C-Test (time pressure);
 - S-C-Test would show **lower** correlations with learners' **writing** and **reading** skills than a canonical C-Test if measured under generous time conditions (p. 289)

Speeded C-Test: Previous research on time variable

Zimmermann, 2019:

Fadaeipour & Zohoorian, 2017:

B2 German learners higher correlations for S-C-Test with tests of **speaking** (dialogical) and **listening comprehension** mixed-level English learners S-C-Test better predictor of **reading comprehension** (RC Test) only **two** C-Test **texts** per administration; time limit **2.5 min** for "speeded" text

7

Research gaps

- paper-based C-Tests
- time-reduced C-Tests as instruments (Reichert et al., 2010) and/or not canonical C-Tests (Raatz, 2002: 1 text 100 gaps instead of 4x25)
- focus on individual learner groups, primarily highly proficient L2 learners and native speakers in L1/L2 German (Grotjahn et al., 2010; Zimmermann, 2019)
- correlational analyses (Fadaeipour & Zohoorian, 2017; Zimmermann, 2019) and comparisons of test difficulty (Grotjahn et al., 2010)
- unknown how the proportion of different aspects of knowledge (declarative and procedural knowledge) & skills (lower- & higher-level processing skills) in the C-Test construct changes when completion time is drastically reduced

Objective of the study

- Using different methods to gather various types evidence to answer a range of research questions to specifically investigate the role of the time variable in the C-Test construct in a comprehensive way to allow for a higher degree of generalizability of the results for:
 - learners of different levels of proficiency (from beginners to advanced)
 - several languages (English, German, Russian)
 - computer-administered C-Tests

Motivation & relevance

- Elusive construct (different constructs?)
- Relatively easy to develop & use in local contexts (e.g. to be used for placement)
- Modifications can be made to construction principles, scoring & time to adjust to the purpose, target group and target language (e.g. Drackert & Timukova 2020: heritage speakers of RUS)
- Stake holders need quick(er) tests (no justification for 5 minutes; piloting new texts; ChatGPT more difficult to use under time pressure?)

Research questions & methods

RQ	Method(s)
T. How does the time variable influence the reliability of computerised C-Tests?	IRT reliability coefficients
2. How does the time variable influence learners' scores depending on their proficiency level ?	on MANCOVA analysis
3. Which components of L2 proficiency (declarative, procedural knowledge and automaticity) are better predictors of differently times C-Tests?	Linear regression analysis; SEM
4. How does the time variable influence the correlations between a C Test and an integrated measure of oral proficiency?	- Correlation (with OEIT)
5. How does the time variable influence the strategies deployed by learners?	Process-oriented video-based analysis (Kerschhofer-Puhalo, Lalouschek & Mayer, 2018)

g.a.s.t.

Study design

- Two C-Tests: Version A (speeded) & Version B; 5 texts with 20 gaps in each version
- Oral Elicited Imitation Test
- Battery of 7 tests of declarative and procedural knowledge (for RQ3)
- Test of typing skills (https://10fastfingers.com/)
- Background questionnaire

Platforms:

- g.a.s.t.-*Moodle*
- testable

Setting **time limit per text** for speeded C-Test:

- pilot with native speakers;
- average processing times per text + 20%
 -> rounded up;
- from 1:40 min to
 2:50 min for all
 languages (still open for discussion)

Pilot results for RQ1, RQ2 & RQ4

- ENG sample:
- *N* = 34,
- age *M* = 25,92,
- students,
- different L1s

RQ1: How does the time variable influence the reliability of computerised C-Tests?

- Hypothesis: The reliability of the C-Test is expected to be influenced by the time factor and moderated by learners' L2 proficiency.
- Method: Cronbach's alpha (main study: IRT reliability coefficients)

	N	Cronbach's alpha	<i>N</i> of items
C-Test	34	.949	5
Speeded C-Test	34	.951	5

Reliability C-Test & Speeded C-Test (ENG)

RQ2: How does the time variable influence learners' scores depending on their proficiency level?

- Hypothesis: Learners' scores are expected to increase with additional time. The amount of gain in the scores will depend on learners' level of proficiency.
- Method: Wilcoxon Signed Rank Test (main study: MANCOVA analysis)

	N	М	SD	Min.	Max.		
C-Test	34	70.74	20.60	15	94		
Speeded C-Test	34	68.44	20.63	15	93		
	$z = -1.996, p = 0.046^*$						

Total scores C-Test & Speeded C-Test (ENG)

g.a.s.t.

RQ4: How does the time variable influence the correlations between a C-Test and an integrated measure of oral proficiency?

- Hypothesis: Completion of a C-Test under time constraints will require learners to rely largely on their automatized language knowledge, so the less time is available for a C-Test, the higher it will correlate with OEIT. The results are expected to be influenced by learners' L2 proficiency.
- Method: correlations with OEIT

	N	Spearman's rho	Z	r²
C-Test	34	.740	<.001	.548
Speeded C-Test	34	.827	<.001	.684

Correlation C-Test & Speeded C-Test with OEIT ENG

RQ 3: How does the time variable influence the role of different components in the construct of a C-Test?

- Hypothesis: Performance on the canonical C-Test can be better predicted by measures of declarative and procedural knowledge, whereas performance on the speeded C-Test can be better predicted by measures of (procedural knowledge and) automaticity
- Method: Linear regression analysis, SEM

Instruments: Declarative and procedural knowledge (RQ 3)

Test	Format	Construct	Source/Author	
Vocabulary Size Test (VST)	Match words to definitions (<i>untimed</i>)	Declarative (receptive) knowledge of vocabulary (breadth of vocabulary)	Institut für Testforschung und Testentwicklung e.V. Leipzig (Nation, 1990)	
Grammatical Acceptability Judgment Test (GAJT)	Decide whether sentences are grammatically acceptable or not (<i>untimed</i>)	Declarative (receptive) knowledge of grammar	DeKeyser (2000) & Lu (2010)	
Grammar Correction Task (GCT)	Correct highlighted parts of sentences (<i>untimed</i>)	<i>Declarative(?)</i> (productive) knowledge of grammar	ungrammatical sentences from GAJT	
Orthographic Awareness Task (OAT)Decide whether pseudowords are possible in the target language (untimed)		Declarative (abstract) knowledge of orthography (legal letter combinations of a writing system)	Drackert et al. (project); concept by Möller (van der Leij, Bekebrede & Kotterink 2010; König, Calude & Coxhead 2020)	
Orthographic Choice Ta sk (OCT)	Decide whether words are spelled correctly or not (<i>timed</i>)	<i>Procedural(?)</i> (word-specific) knowledge of orthography	Drackert et al. (based on Olson et al., 1994)	
Modified Self- Paced Reading Test (SPRT)	Read sentences part by part; answer questions about their content (distractors) and grammaticality (items) (<i>timed</i>)	Procedural (receptive) knowledge of grammar	versions of sentences used in GAJT (targeting same phenomena) (Marsden et al., 2017)	
Written Elicited Imitation Test (WEIT)	Reconstruct written stimuli in writing (<i>timed</i>)	Procedural integrated linguistic knowledge & skills	Drackert et al. (project); concept by Timukova	
•			29	

Structural Equation Model (RQ 3)

RQ 3: How does the time variable influence the role of different components in the construct of a C-Test?

	-	VST	GAJT	GCT	OAT	ОСТ	SPR	WEIT
C-Test	Spearman's rho	0.832	0.851	0.834	0.769	0.769	0.769	0.856
	p	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
S-C-Test	Spearman's rho	0.733	0.876	0.866	0.746	0.745	0.756	0.913
	ρ	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

Correlations C-Test & Speeded C-Test with scores on different instruments ENG

Correlations C-Test & Speeded C-Test with automaticity on different instruments ENG

			VST	GAJT	GCT	ΟΑΤ	ост	SPR	WEIT
	C-Test	Spearman's rho	0.833	0.423	0.802	0.121	0.513	0.708	0.845
		p	<0.001	0.014	<0.001	0.501	0.003	<0.001	<0.001
	S-C-Test	Spearman's rho	0.812	0.557	<mark>0.849</mark>	0.163	0.528	<mark>0.747</mark>	0.906
		p	<0.001	<0.001	<0.001	0.364	0.002	<0.001	<0.001
g.a.s.t							21		

Summary of the pilot results

RQ1: reliability of C-Test & S-C-Test ENG almost the same (influence of L2 proficiency cannot be determined yet)

RQ2: learners' scores increase significantly with additional time (influence of L2 proficiency cannot be determined yet)

RQ3: mixed results of correlation analyses (intended methods not possible with the pilot sample): higher correlations for S-C-Tests with automaticity measures

RQ4: S-C-Test correlates higher with OEIT in ENG (influence of L2 proficiency cannot be determined yet)

RQ5: not discussed

Towards the main study

Theoretical issues:

- Time limits on speeded C-Tests
- Automaticity measure
- Construct of some instruments (GCT & OCT)

Practical issues:

- Modify instruments based on item analyses
- Plan online administration
- Recruite participants (your support is most welcome ③!)

July – November 2023 Online data collection participants: n = **540** (**180** per language – three proficiency levels a **60** participants)

Towards the main study

Theoretical issues:

- Time limits on speeded C-Tests
- Automaticity measure
- Construct of some instruments (GCT & OCT)

Practical issues:

- Modify instruments based on item analyses
- Plan online administration

Recruite participants (your support is most welcome ©!)

July – November 2023 Online data collection participants: n = **540** (**180** per language – three proficiency levels a **60** participants)

Thank you! Vielen Dank! Спасибо!

anna.timukova@gast.de

g.a.s.t.