

A mixed-methods study into the role of the time variable in the construct of computeradministered C-Tests in three languages

Anastasia Drackert, Anna Timukova, <u>Franziska Möller,</u> Darja Felberg, Ilka Plesse

EuroSLA 32

University of Birmingham

unded by

DFG Deutsche Forschungsgemeinschaft German Research Foundation project number 462766474

Project Milestones

Overview

- Introduction to the C-Test and its construct
- Study objectives, design, RQs & methodology
- Operationalization of important constructs
- Results from the pilot study (RQ3)
- Moving forward: The main study

C-Test

- Integrative measure of **global language proficiency**: "objective, highly reliable and very economical" (Grotjahn, 2013, p. 181)
- placement (e.g. Drackert & Felberg, 2019)
- screening before using expensive and time-consuming test batteries (e.g. Eckes, 2014)
- SLA research and studies (Norris, 2018) on educational monitoring (e.g. Harsch & Schröder, 2007)
- quality assurance (e.g. Deutsches Sprachdiplom)

C-Test: Construct

- Modification of the cloze test (Raatz & Klein-Braley, 1982)
- Principle of reduced redundancy:
 - higher proficiency less redundancy needed
- Lower-level (lexical, morphological, syntactic and orthographic) & higher-level skills (awareness of intersentential relationships, metacognitive strategies, global reading skills etc.)
- "Fluid construct": aspects of construct tapped by C-Test depend on text difficulty & learner proficiency (Sigott, 2004)

What about the time?

C-Test: Construct & Time

- Generous time limit of 5 min per C-Test text (e.g. Eckes, 2010; Harsch & Harting, 2015; Porsch & Wilden, 2017)
- 2. Reduced time limit:
 - a. reduced & constant for each C-Test text:
 - L1 research on intelligence in the field of psychology (e.g. Raatz, 2002; Wockenfuß, 2008; Wockenfuß & Raatz, 2014)
 - L2 research (e.g. Bisping, 2006; Drackert & Felberg, 2019)
 - b. partially variable (e.g. Reichert et al., 2010)
 - c. drastically reduced & text-specific = Speeded C-Test (e.g. Forthmann et al., 2019; Grotjahn et al., 2010; Heine, 2017; Zimmermann, 2019)

Almost all knowledge about C-Test construct based on tests with generous time limit

Speeded C-Test

- Grotjahn (2010):
 - Canonical C-Test (5 min per text) measures the amount of learners' declarative and procedural knowledge
 - Speeded C-Test additionally measures the degree of automaticity of their skills and the efficiency of information processing (cf. p. 285)

Hypotheses:

- S-C-Test would correlate **higher** with measures of **listening** comprehension and **speaking** skills than a canonical C-Test (time pressure)
- S-C-Test would show **lower** correlations with learners' **writing** and **reading** skills than a canonical C-Test if measured under generous time conditions (Grotjahn, 2010, p. 289)

Research gaps

- Research focused on:
 - individual learner groups, primarily highly proficient L2 learners and native speakers in

L1/L2 German (Grotjahn et al., 2010; Zimmermann, 2019)

 correlational analyses (Fadaeipour & Zohoorian, 2017; Zimmermann, 2019) and comparisons of test difficulty (Grotjahn et al., 2010)

unknown changes of the proportion of different aspects of knowledge (declarative and procedural knowledge) & skills (lower- & higher-level processing skills) in the C-Test construct when completion time is drastically reduced

Objective of the study

- Using different methods to gather various types of evidence to answer a range of research questions to specifically investigate the role of the time variable in the C-Test construct in a comprehensive way to allow for a higher degree of generalizability of the results for:
 - computer-administered C-Tests
 - learners of different levels of proficiency (from beginners to advanced)
 - several languages (English, German, Russian)

Research questions & methods

RQs	Methods
1. How does the time variable influence the reliability of computerised	IRT reliability coefficients
C-Tests?	
2. How does the time variable influence learners' scores depending on	MANCOVA analysis
their proficiency level ?	
3. Which components of L2 proficiency (declarative, procedural	Linear regression analysis; SEM
knowledge and automaticity) are better predictors of differently timed	
C-Tests?	
4. How does the time variable influence the correlations between a C-	Correlation (with OEIT)
Test and an integrated measure of oral proficiency?	
5. How does the time variable influence the strategies deployed by	Process-oriented video-based
learners?	analysis

Study design

- 2 C-Tests: a canonical and a speeded version
 - 5 texts with 20 gaps in each version
- Oral Elicited Imitation Test
- 7 tests of declarative and procedural knowledge
- test of typing skills (https://10fastfingers.com/)
- background questionnaire

Platforms:

- g.a.s.t.-Moodle
- testable

RQ 3:

Which components of L2 proficiency (**declarative, procedural knowledge** and **automaticity**) are better predictors of differently timed C-Tests?

- ACT (adaptive control of thought) theory (Anderson, 1983; Anderson & Lebriere, 1998) ٠
 - general theory of skill learning; transition from DK (knowledge *that;* stored as chunks) to PK (knowledge *how*; "production rules") and automatic execution
- Skill Acquisition Theory (DeKeyser 1997; 2014) •
 - focus on L2 in language instruction settings; fixed chronological sequence (declarative stage > proceduralisation > automaticity)
- **Neurolinguistic Theory of Bilingualism** (Paradis, 2009) •
- declarative memory conscious (facts and events), while procedural memory unavailable to conscious recall (perceptual, motor or cognitive skills) in different brain regions g.a.s.t.

- Declarative/Procedural Model (Ullman, 2020; Morgan-Short & Ullman, 2022)
 - Neurobiological model of language learning, knowledge and use
 - declarative memory (DM): explicit & implicit knowledge; lexicon (open-class content words), sound-meaning mappings; irregular morphological forms; idiosyncratic or individual chunks; generalized analogies and explicit rules
 - procedural memory (PM): implicit knowledge only; cognitive and (perceptuo-)motor skills, categories, habits; (rule-governed) grammar (phonology, morphology and morphosyntax); predictable sequences, (real-time) combination of elements made possible by prediction of downstream elements
 - knowledge can be **automatized** in **both** memory systems

- Declarative/Procedural Model (Ullman, 2020; Morgan-Short & Ullman, 2022)
 - consequences for **operationalisation**:
 - type & form of **declarative** and **procedural** knowledge "are often quite different, even while this knowledge underlies the **same or similar outcomes**" (Ullman, 2016, p. 957)

- Operationalisation:
 - DK: consciously accessible linguistic knowledge (no time pressure; attention to the stimuli) stored as chunks, i.e. vocabulary units, explicit grammar & orthography rules
 - PK: unconscious (implicit) largely automatised knowledge and psychomotor skills necessary for real-time (online) processing and production of rule-governed morphological and syntactic sequences
 - Automaticity: processing speed and accuracy

RQ 3: Which components of L2 proficiency (**declarative, procedural knowledge** and **automaticity**) are better predictors of differently timed C-Tests?

- Hypothesis: Performance on the Canonical C-Test can be better predicted by measures of declarative and procedural knowledge, whereas performance on the Speeded C-Test can be better predicted by measures of (procedural knowledge and) automaticity.
- Planned Method: Linear regression analysis, SEM

Measures of declarative and procedural knowledge

Test	Format	Construct	Source/Author	
Vocabulary Size Test (VST)	cabulary Size Test (VST) Match words to definitions (<i>untimed</i>)		Institut für Testforschung und Testentwicklung e.V. Leipzig (Nation, 1990)	
Grammatical Acceptability Judgment Test (GAJT)	Grammatical Acceptability Judgment Test (GAJT) Decide whether sentences are grammatically acceptable or not (<i>untimed</i>)		DeKeyser (2000) & Lu (2010)	
Grammar Correction Task (GCT)	Correct highlighted parts of sentences (<i>untimed</i>)	<i>Declarative(?)</i> (productive) knowledge of grammar	ungrammatical sentences from GAJT	
Orthographic Awareness Task (OAT)	Decide whether pseudowords are possible in the target language (<i>untimed</i>)	Declarative (abstract) knowledge of orthography (legal letter combinations of a writing system)	Drackert et al. (project); concept by Möller (van der Leij, Bekebrede & Kotterink 2010; König, Calude & Coxhead 2020)	
Test	Format	Construct	Source/Author	
Orthographic Choice Task (OCT)	Decide whether words are spelled correctly or not (<i>timed</i>)	<i>Procedural(?)</i> (word-specific) knowledge of orthography	Drackert et al. (based on Olson et al., 1994)	
Modified Self- Paced Reading Test (SPRT)	Read sentences part by part; answer questions about their content (distractors) and grammaticality (items) (<i>timed</i>)	Procedural (receptive) knowledge of grammar	versions of sentences used in GAJT (targeting same phenomena) (Marsden et al., 2017)	
Written Elicited Imitation Test (WEIT)	Reconstruct written stimuli in writing (<i>timed</i>)	Procedural integrated linguistic knowledge & skills	Drackert et al. (project); concept by Timukova	

Measures of declarative and procedural knowledge: GAJT

Is the sentence below grammatically **acceptable** or **not acceptable** in English?

Rats are typically bigger than mouses.

- 62 items
- pairs of grammatical / ungrammatical sentences
- different grammatical phenomena
- randomized order of presentation

Measures of declarative and procedural knowledge: GCT

Please type the correction of the highlighted part into the box.

Rats are typically bigger than mouses.

- 32 items
- ungrammatical sentences from GAJT
- randomized order of presentation

Measure of automaticity

- processing speed and accuracy
- scores and reaction times for correctly solved items

	Example:					
	ID	GAJT_score	GAJT_RT	GAJT_Automaticity		
total score on a test / mean reaction	pe0103_03	62	2693	.023		
ime for correctly solved items	pe0103_01	62	4648	.013		
	pe0103_01	52	13767	.004		
	pe2402_11	33	7310	.005		

Structural Equation Model

Results from the pilot study (RQ 3)

Correlations with scores on different instruments

Correlations C-Test & Speeded C-Test with scores on different instruments ENG

		VST	GAJT	GCT	ΟΑΤ	ОСТ	SPR	WEIT
C-Test	est Spearman's rho		0.851	0.834	0.769	0.769	0.769	0.856
	p	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
S-C-Test	Spearman's rho	0.733	0.876	0.866	0.746	0.745	0.756	0.913
	p	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

Correlations C-Test & Speeded C-Test with scores on different instruments GER

		VST	GAJT	GCT	ΟΑΤ	ОСТ	SPR	WEIT
C-Test	Spearman's rho	0.627	0.809	0.915	0.768	0.828	0.862	0.962
	p	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
S-C-Test	Spearman's rho	0.608	0.791	0.932	0.739	0.831	0.857	0.979
	p	0.004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	C-Test S-C-Test	C-Test Spearman's rho p S-C-Test Spearman's rho p	VST C-Test Spearman's rho 0.627 p 0.003 S-C-Test Spearman's rho 0.608 p 0.004	VST GAJT C-Test Spearman's rho 0.627 0.809 p 0.003 <0.001	VSTGAJTGCTC-TestSpearman's rho 0.627 0.809 0.915 p 0.003 <0.001 <0.001 S-C-TestSpearman's rho 0.608 0.791 0.932 p 0.004 <0.001 <0.001	VSTGAJTGCTOATC-TestSpearman's rho 0.627 0.809 0.915 0.768 p 0.003 <0.001 <0.001 <0.001 <0.001 S-C-TestSpearman's rho 0.608 0.791 0.932 0.739 p 0.004 <0.001 <0.001 <0.001 <0.001	VSTGAJTGCTOATOCTC-TestSpearman's rho 0.627 0.809 0.915 0.768 0.828 p 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 S-C-TestSpearman's rho 0.608 0.791 0.932 0.739 0.831 p 0.004 <0.001 <0.001 <0.001 <0.001 <0.001	VSTGAJTGCTOATOCTSPRC-TestSpearman's rho0.6270.8090.9150.7680.8280.862p0.003<0.001

Correlations with automaticity on different instruments

Correlations C-Test & Speeded C-Test with automaticity on different instruments ENG

		VST	GAJT	GCT	ΟΑΤ	ОСТ	SPR	WEIT
C-Test	Spearman's rho	0.833	0.423	0.802	0.121	0.513	0.708	0.845
	p	<0.001	0.014	<0.001	0.501	0.003	<0.001	<0.001
S-C-Test	Spearman's rho <i>p</i>	0.812 <0.001	<mark>0.557</mark> <0.001	<mark>0.849</mark> <0.001	0.163 0.364	<mark>0.528</mark> 0.002	<mark>0.747</mark> <0.001	<mark>0.906</mark> <0.001

Correlations C-Test & Speeded C-Test with automaticity on different instruments GER

			VST	GAJT	GCT	ΟΑΤ	ОСТ	SPR	WEIT
	C-Test	Spearman's rho	0.844	0.500	0.845	-0.264	0.374	0.431	0.874
		p	<0.001	0.021	<0.001	0.247	0.095	0.065	<0.001
	S-C-Test	Spearman's rho	<mark>0.853</mark>	<mark>0.520</mark>	<mark>0.859</mark>	-0.252	0.384	<mark>0.477</mark>	<mark>0.917</mark>
		p	<0.001	0.016	<0.001	0.270	0.086	0.039	<0.001
a.s.t.							26		

Summary

mixed results of correlation analyses (intended methods not possible with the pilot sample):
higher correlations for S-C-Tests with automaticity measures

- scores on declarative knowledge: better predictor for performance on Canonical C-Test
- scores procedural knowledge: no clear tendency (yet)
- automatised knowledge: better predictor for performance on Speeded C-Test

Moving forward: The main study

Theoretical issues:

- Time limits on Speeded C-Tests
- Construct of some instruments (GCT & OCT)
- Automaticity measure?

Practical issues:

- Modifications of instruments based on item analyses
- Acquisition of participants (your support is most welcome!)

August – November 2023 online data collection participants: N = **540** (**180** per language – three proficiency levels a **60** participants)

Thank you! Vielen Dank! Спасибо!

Contact: moeller@gast.de

More info about our study:

