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ABSTRACT
Recent research on rater effects in performance assessments has increasingly 
focused on rater centrality, the tendency to assign scores clustering around 
the rating scale’s middle categories. In the present paper, we adopted Jin and 
Wang’s (2018) extended facets modeling approach and constructed 
a centrality continuum, ranging from raters exhibiting strong central tenden
cies to raters exhibiting strong tendencies in the opposite direction (extre
mity). In two simulation studies, we examined three model-based centrality 
detection indices (rater infit statistics, residual–expected correlations, and 
rater threshold SDs) as well as the raw-score SD in terms of their efficiency of 
reconstructing the true rater centrality rank ordering. Findings confirmed the 
superiority of the residual–expected correlation, rater threshold SD, and raw- 
score SD statistics, particularly when the examinee sample size was large and 
the number of scoring criteria was high. By contrast, the infit statistic results 
were much less consistent and, under conditions of large differences 
between criterion difficulties, suggested erroneous conclusions about raters’ 
central tendencies. Analyzing real rating data from a large-scale speaking 
performance assessment confirmed that infit statistics are unsuitable for 
identifying raters’ central tendencies. The discussion focuses on detecting 
centrality effects under different facets models and the indices’ implications 
for rater monitoring and fair performance assessment.
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Assessments in the social, behavioral, and health sciences often rely on human raters to evaluate 
examinees’ performance on a given task or item (Kane et al., 1999; Lane & Stone, 2006). The tasks may 
range from limited production tasks like short-answer questions to extended production tasks, 
prompting examinees to write an essay, deliver a speech, or provide work samples (Carr, 2011; 
Johnson et al., 2009). Whatever the exact nature of the tasks, human ratings of examinee performance 
have a role in making decisions, including high-stakes decisions on university admission, graduation, 
certification, immigration, or staff recruitment. Moreover, in developing and implementing auto
mated scoring systems, human ratings are considered the “gold standard” for determining the 
accuracy of the scores these systems produce (Powers et al., 2015; Williamson et al., 2012; Wolfe,  
2020). Therefore, it is essential to ensure that the assessments conform to high psychometric quality 
standards, particularly regarding their reliability, validity, and fairness (Engelhard & Wind, 2018; Lane 
& DePascale, 2016; Penfield, 2016).

However, the level of rating quality achievable in an assessment is generally limited by raters’ 
judgmental and decision-making processes, in particular, their perception of performance features, 
their interpretation and use of the scoring rubric, and their more or less implicit response biases (Bejar,  
2012; Eckes, 2012; Glazer & Wolfe, 2020; Lane, 2019; Myers et al., 2020). Together referred to as rater 
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effects, these varied and mostly subtle rater influences have long been known to threaten the validity of 
the assessment outcomes. There has been a similarly long tradition of research on psychometric 
models and statistical indices for detecting these effects (Myford & Wolfe, 2003, 2004; Saal et al., 1980; 
Wolfe & Song, 2016).

Much of this research has been concerned primarily with rater severity (Engelhard, 1992; Lunz 
et al., 1990, 1996; McNamara, 1996). Severity effects manifest themselves through decreases in the 
average level of the scores assigned to examinees, decreases not expected given the quality of their 
performances. With its opposite tendency (i.e., leniency), rater severity is arguably the most pervasive 
and detrimental effect. More recently, the researchers’ attention has increasingly been directed toward 
another rater effect – centrality (Falk & Cai, 2016; Jin & Wang, 2014, 2018; Uto & Ueno, 2020; Wolfe & 
Song, 2015, 2016). Rater centrality effects manifest themselves through decreases in the dispersion of 
the scores assigned to examinees, decreases not expected given the variability of their performances. 
That is, raters subject to centrality tend to assign scores unduly clustering around the rating scale’s 
middle category (or categories). With its opposite tendency (i.e., extremity or extreme response style), 
centrality (much like severity) covers varying degrees of negative influences on an assessment’s validity 
and fairness (Myford & Wolfe, 2003, 2004; Wolfe & Song, 2016).

The present research focuses on centrality effects, specifically, how to detect, measure, and control 
these effects in the context of large-scale performance assessments. In simulation and real-data studies, 
we examined the usefulness of several statistical indices proposed in the literature for detecting 
centrality effects (Myford & Wolfe, 2004; Wolfe & Song, 2015, 2016; Wu, 2017).

For this purpose, we built on the extended facets modeling approach proposed by Jin and Wang 
(2018). This approach allowed us to construct a continuum of centrality, ranging from raters exhibit
ing strong central tendencies to raters exhibiting strong tendencies in the opposite direction (extre
mity). Also, we constructed a separate continuum of severity for the same group of raters, 
distinguishing between severe and lenient raters. We then compared the raters’ location on the 
centrality continuum to their centrality values provided by the different statistical indices, system
atically varying several characteristics typical of performance assessments. Finally, we probed these 
indices’ practical utility using real rating data from a large-scale speaking assessment.

Indirect modeling approaches to rater centrality

Studies adopting a latent trait or item response theory (IRT) modeling approach to rater centrality 
have typically followed an indirect, two-step procedure: In the first step, the rating data are analyzed to 
estimate a single rater parameter, that is, rater severity. In the second step, a statistical index is 
computed based on the findings to capture individual raters’ central (or extreme response) tendency 
(Wolfe & Song, 2015, 2016). By contrast, in this paper, we advocate a direct approach, distinguished by 
simultaneously estimating two rater parameters: rater severity and centrality (we discuss the direct 
approach in more detail later). As for the indirect approach, Table 1 summarizes the key features of 
three model-based centrality indices that have been in use since the early 1990s.

The first rater centrality index, the rater infit statistic (MSW), belongs to the family of residual fit 
statistics (DeMars, 2017; Wright & Masters, 1982; Wu & Adams, 2013). In the context of human 
ratings, these statistics indicate the extent to which scores provided by a given rater match the scores 
expected under a particular psychometric model.

In a three-facet assessment situation where J raters assign scores to N examinees on I tasks (or 
items, criteria) using a rating scale with m + 1 categories, that is, k = 0, . . ., m, the following many-facet 
Rasch measurement or facets model, for short, an extension of the rating scale model (Andrich, 1978), 
may be used (Eckes, 2015; Engelhard & Wind, 2018; Linacre, 1989): 

ln
pnijk

pnij k� 1ð Þ

" #

¼ θn � βi � αj � τk; (1) 
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where pnijk is the probability of examinee n receiving a rating of k from rater j on task i, pnij(k–1) is the 
probability of examinee n receiving a rating of k – 1 from rater j on task i, θn is the ability of examinee 
n, βi is the difficulty of task i, αj is the severity of rater j, and τk is the difficulty of receiving a rating of 
k relative to k – 1.

Based on the three-facet rating scale model (Equation (1)), the rater infit statistic is computed as the 
average of the squared standardized residuals over all examinees and tasks involved in producing that 
rater’s scores, each squared standardized residual weighted by its variance or statistical information 
(Eckes, 2015; Engelhard & Wind, 2018). Infit statistics have an expected value of 1.0 and range from 0 to 
plus infinity (Linacre, 2002; Myford & Wolfe, 2003). Thus, fit values greater than 1.0 indicate more 
variation than expected in the ratings (reduced predictability). By contrast, fit values less than 1.0 indicate 
less variation than expected; that is, the ratings tend to be muted or overpredictable; this is called overfit.

In operational settings, raters providing muted ratings in terms of overusing the middle category 
(or categories) of the rating scale have been associated with overfit. Such rating tendencies would 
manifest themselves, for example, through MSW values less than 1.0, in particular, less than 0.70 or 
0.75 (e.g., Engelhard, 1994). For this reason, rater overfit has been suggested as a potential indicator of 
rater centrality. More recently, Wind and Jones (2019) found that average infit statistics for raters 
simulated to exhibit centrality (the “effect” or “central” raters) were lower than the average infit 
statistics for the “no-effect” raters; the infit values for the central raters ranged from 0.35 to 0.48, 
irrespective of the rating design used.

However, evidence has also accumulated that fit statistics may be sensitive to various other rater 
effects, such as halo error, inaccuracy or randomness, and range of restriction (Myford & Wolfe, 2004; 
Wolfe, 2004; Wolfe et al., 2000, 2007), calling into question any straightforward interpretation of rater fit 
statistics in terms of centrality effects. For example, Wolfe et al. (2000) observed rater fit statistics greater 
than 1.0 for raters simulated to exhibit centrality – a finding in stark contrast to Wind and Jones (2019).

Myford and Wolfe (2004) suggested a possible explanation for observing rater fit values greater 
than 1.0 in the presence of centrality effects. They created a hypothetical example where a rater scored 
a single examinee on a set of 10 traits differing widely in difficulty. When this rater assigns average 
scores on each trait, thus exhibiting centrality, the observed scores will show no variation and 
mismatch the expected scores. As a result, the infit statistic will be greater than the expected value 
of 1.0 in this case. Conversely, when another rater provides accurate scores on each trait, faithfully 
representing each trait’s difficulty, the observed scores will vary widely and perfectly match the 
expected scores, resulting in an infit value close to zero. Therefore, in this example, the usual way of 
interpreting the infit statistic is completely disrupted.

Though Myford and Wolfe’s (2004) example may not be typical of the conditions found in 
operational performance assessments, as a safeguard against incorrect inferences about a given rater’s 
centrality, they recommended that “the researcher carefully examine vectors of observed ratings for all 

Table 1. Overview of model-based rater centrality indices.

Centrality index Valuesa Facets modelb Referencesc

Weighted mean-square 
residual fit (rater infit, MSW)

Low (overfit, e.g.,  
MSW < 0.75)

Rating scale model (RSM; 
Equation (1))

Engelhard (1992, 1994); Myford and Wolfe 
(2004); Smith (1996); Wolfe et al.  
(2000, 2007)

Residual–expected correlation  
(rres,exp)

Negative (e.g.,  
rres,exp < –.30)

Rating scale model (RSM; 
Equation (1))

Wolfe (2004); Wolfe and McVay (2012); Wolfe 
and Song (2014, 2015)

Standard deviation of rater 
threshold estimates  
(SD(τjk))

High Rater-related partial credit 
model (PCM; Equation (2))

Myford and Wolfe (2004); Song and Wolfe 
(2015); Stafford et al. (2018); Wu (2017)

aEntries indicate when raters would be identified as manifesting centrality under each index. 
bModel version typically used for computing each centrality index. 
cSample studies that examined one or more centrality indices.
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overfitting or misfitting raters before concluding that they are exhibiting a central tendency effect” 
(Myford & Wolfe, 2004, p. 203). Thus, in one of our simulation studies, we will examine when to 
expect rater infit statistics greater than 1.0 even if raters demonstrate centrality.

Wolfe (2004) proposed another centrality index, the residual–expected correlation statistic 
(rres,exp). The rationale underlying this index is as follows: When rater j exhibits a centrality effect, 
the scores this rater assigns to high-proficient examinees are lower than the expected ratings; hence, 
the residuals will be large and negative. Conversely, the scores assigned to low-proficient examinees 
are higher than the expected ratings; the residuals will be large and positive in this case. As a result, 
the Pearson correlation between residual and expected scores will be negative: High expected scores 
tend to go with large negative residuals, and low expected scores tend to go with large positive 
residuals.

Rater fit statistics and residual–expected correlations build on the facets model’s rating scale version 
(Equation (1)). A third centrality index builds on a particular version of the partial credit model 
(Masters, 1982). In the present facets context, this version is given by 

ln
pnijk

pnij k� 1ð Þ

" #

¼ θn � βi � αj � τjk; (2) 

where all parameters are as in Equation (1) except for the τjk term. This term represents the difficulty of 
receiving a rating of k relative to k – 1 from rater j. Hence, Equation (2) specifies a rater-related three- 
facet partial credit model. In contrast to the previous model (Equation (1)), raters are no longer 
assumed to share the same rating scale structure. Rather, the rating scale for each rater is modeled to 
have its own category structure.

Considering a partial credit model like this, Myford and Wolfe (2004; see also Wolfe & Song, 2015; 
Wu, 2017) suggested using the standard deviation of the rater threshold parameter estimates (SD(τjk)), 
or rater threshold SD, for short, to detect central tendencies. Their proposal rests on the following 
reasoning: When raters exhibit centrality effects, they tend to include a wide range of examinee 
proficiency levels in the rating scale’s middle category (or categories). In this case, the lower thresholds 
will drop and the higher thresholds will rise. Therefore, raters assigning scores associated with greater 
SD(τjk) values are likely to exhibit a centrality effect; raters assigning scores associated with smaller 
SD(τjk) values are likely to exhibit an extremity effect.

Model-based centrality indices share the feature of utilizing the complete set of ratings for 
parameter estimation. Alternatively, there has been some tradition of using observed score frequencies 
to indicate central tendencies (Johnson et al., 2009). Specifically, one may compute, separately for each 
rater, the standard deviation of the scores assigned, that is, the observed or raw score SD (SDobs), with 
smaller SDobs indicating greater centrality. However, the use and interpretation of this index are 
limited because it lacks a suitable basis for evaluation in most practical applications (Wolfe, 2020; 
Wolfe & Song, 2016). For example, when comparing individual raters’ raw scores to consensus scores 
assigned by a group of expert raters, the set of jointly scored performances is typically small and 
possibly biased along the rating scale in terms of preselected performance levels. Nonetheless, in our 
simulation and real-data studies, we will consider the SDobs index because it is usually the only 
centrality index available to practitioners without further psychometric analysis.

Direct rater centrality modeling

Each facets model shown in Equations (1) and (2) includes a parameter (αj) directly modeling the 
severity of rater j. Consequently, estimates of examinee proficiency are corrected for between-rater 
severity differences in much the same way as they are corrected for between-item or between-task 
difficulty differences (for example, when examinees are free to choose which item or task to work on). 
However, for rater centrality, the situation is fundamentally different. Facets models currently in use 
do not include a rater centrality parameter and, therefore, do not provide rater centrality estimates, 
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nor do they provide examinee proficiency estimates that compensate for between-rater centrality 
differences. Adopting Jin and Wang (2018) terminology, these models are called facets models–severity 
only or FM-S, for short.

Extending these models, Jin and Wang (2018) proposed a facets model incorporating a rater 
centrality parameter. Building on the same three-facet situation as before, this model is defined as 
follows: 

ln
pnijk

pnij k� 1ð Þ

" #

¼ θn � βi � αj � ωjτik; (3) 

where all parameters are as in Equations (1) and (2) except for the ωjτik term. In this term, the 
parameter ωj (with ωj > 0) is a weight parameter representing the centrality of rater j. Also, the 
parameter τik denotes the threshold for a particular task; that is, the difficulty of receiving a rating of 
k relative to k – 1 when considering task i. Unlike the previous models (Equations (1) and (2)), it is 
assumed that the rating scale structure varies from task to task. Hence, Equation (3) specifies a three- 
facet task-related partial credit model (PCM) accounting for rater severity and centrality. 
Alternatively, a rating scale (RSM) version of this model may be specified by replacing, in Equation 
(3), the task-related threshold parameter τik by τk. Following Jin and Wang (2018), facets model 
extensions of this kind are subsumed under the term facets model–severity and centrality or FM-SC, for 
short.

Given the parameterization shown in Equation (3), the higher the value of ωj, the more rater 
j tends to overuse the middle categories of the rating scale, exhibiting a centrality effect; con
versely, the lower the value of ωj, the more that rater tends to overuse the extreme categories of the 
rating scale, exhibiting an extremity effect; when ωj = 1 for j = 1, . . ., J, the FM-SC reduces to the 
FM-S.

Jin and Wang (2018) estimated the model parameters specified in the FM-SC (Equation (3)), 
building on a Bayesian approach (Levy & Mislevy, 2016). Following this approach, Eckes and Jin 
(2021a, 2021b) applied FM-SC’s rating scale and partial credit versions to different real datasets taken 
from writing and speaking performance assessments administered in higher education admissions 
contexts. In the first study (Eckes & Jin, 2021b), two datasets from writing assessments utilizing an 
analytic scoring rubric provided the input to the FM-SC rating scale version; the datasets contained 
scores on three or nine criteria, respectively. In the second study (Eckes & Jin, 2021a), two different 
datasets from writing and speaking assessments utilizing a holistic scoring rubric provided the input to 
the rating scale and partial credit FM-SC versions; the datasets contained scores on two writing tasks 
and six speaking tasks, respectively.

Across studies and datasets, raters showed significant differences in their severity and centrality. 
What is more, the centrality effects had a practically relevant impact on examinee rank orderings. 
For example, in the Eckes and Jin (2021a) study, even though examinee proficiency measures 
estimated under the FM-SC and the FM-S were highly correlated, the resulting rank orders of 
examinees, sorted from high to low proficiency, differed on average by about five (writing) or three 
ranks (speaking).

In both studies, the model-based indices of rater centrality discussed above were derived from FM- 
S analyses run in parallel with the FM-SC. The authors correlated rater infit statistics, residual– 
expected correlations, and rater threshold SDs with each other and with the ω estimates. The 
correlational patterns found were mostly consistent across the four datasets. With one exception, 
the correlations between ω estimates and the indices were moderately high to strong, statistically 
highly significant, and in the expected direction. Thus, higher central tendencies estimated under the 
FM-SC were associated with (a) lower infit values (overfit), (b) lower (typically negative) correlations 
between residual and expected scores, and (c) higher standard deviations of the Rasch-Andrich 
threshold estimates. The exception concerned the correlation between rater infit statistics and ω 
estimates, r(12) = –.41, ns, in the second dataset, first study (Eckes & Jin, 2021a).
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Regarding the indices’ intercorrelations, those involving rater infit showed considerable incon
sistency across studies and datasets. For example, the correlations for the residual–expected correla
tion statistic ranged from r(30) = .71, p < .01, second dataset, second study (Eckes & Jin, 2021a), to r 
(12) = -.25, ns, second dataset, first study (Eckes & Jin, 2021b). These inconsistent correlations are 
reminiscent of Myford and Wolfe’s (2004) recommendation to take a closer look at the misfitting and 
overfitting raters’ scoring patterns before drawing conclusions about their central tendencies.

In the Eckes and Jin (2021a, 2021b) studies, the relationships between centrality parameter 
estimates and the statistical indices were examined using real datasets. Therefore, a range of 
factors may have contributed to the correlations’ observed magnitude and direction. For example, 
the examinee sample size and the number of tasks or scoring criteria may have affected the 
statistical indices in various, unknown ways. Consequently, firm conclusions about each of the 
indices’ suitability for detecting centrality effects could not be drawn on that basis. In situations 
like this, simulation studies, where some factors are systematically varied, and others are deliber
ately held constant, may yield more valid insights.

Several studies have adopted the simulation approach, examining rater effects using various 
statistical indices and determining the rater effects’ impact on the measurement quality of assessment 
outcomes (e.g., Song & Wolfe, 2015; Stafford et al., 2018; Wind, 2019, 2020; Wind & Jones, 2019; 
Wolfe & Song, 2015). Typically, these studies have used psychometric models belonging to the FM-S 
class (see above) to generate data under different rater-effect conditions; that is, the rating data were 
simulated to exhibit certain kinds of rater effects.

For example, Wolfe and Song (2015) used RSM and PCM versions of the FM-S class as well as 
generalized models (Muraki, 1992), incorporating a slope (discrimination) parameter interpreted as 
a rater centrality index. Besides distinguishing between “normal” and “central” raters, the simulation 
design variables included the number of rating scale categories (three or five), different levels of rater 
inaccuracy (randomness), centrality strength (magnitude of simulated centrality effects), and cen
trality prevalence (proportion of raters simulated to exhibit a centrality effect). Results showed that 
the residual–expected correlation index performed better than rater infit statistics, rater threshold 
SDs, and rater slope, providing low Type I error rates (i.e., incorrectly flagging raters who did not 
exhibit a centrality effect) and low Type II error rates (i.e., not flagging raters who exhibited 
a centrality effect).

In another simulation study, Song and Wolfe (2015) used rating data containing multiple rater 
effects. They found that Rasch measures of rater location, rater threshold SD, and correlations between 
observed ratings and estimated examinee proficiencies performed well in detecting rater severity, 
centrality, and inaccuracy, respectively. Similarly, Wind and Guo (2019) studied the combined effects 
of differential rater functioning (DRF) and rater misfit on rater effect detection. The findings 
confirmed that rater fit statistics, rater discrimination estimates, and commonly-used DRF statistics 
were sufficiently sensitive to these rater effects.

In the present research, different from Wolfe and Song (2015) and related simulation studies, we 
built on the direct FM-SC modeling approach (Jin & Wang, 2018). We sampled true rater centrality 
values under conditions typically found in operational large-scale performance assessments. In such 
assessments, ratings are often missing by design; that is, the assessments use incomplete rating designs 
where not every rater scores every examinee’s performance (Eckes, 2015; Wind & Jones, 2019). The 
sampled centrality values were used to study the statistical indices’ suitability for detecting rater 
centrality effects.
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Research questions

Against the background of the FM-SC modeling approach to the study of rater centrality effects, the 
present research aimed to answer the following three questions:

(1) How do statistical indices, particularly rater infit statistics, residual–expected correlations, rater 
threshold SDs, and observed SDs, relate to rater centrality values sampled from a centrality 
distribution according to the FM-SC (Equation (3))? The simulation design included two 
factors: (a) examinee sample size and (b) the number of scoring criteria. Hence, the question 
becomes: What is the sensitivity of each of these indices to rater centrality differences under 
varying numbers of examinees and criteria?

(2) Under what conditions will rater infit values be greater than 1.0 when raters exhibit centrality? 
How do rater infit statistics, residual–expected correlations, rater threshold SDs, and observed 
SDs, behave when scoring criterion difficulties differ in range? This research question explicitly 
addressed Myford and Wolfe’s (2004) suggestion that the trait (or, in our case, criterion) 
difficulty range influences the magnitude of rater infit statistics and severely limits their 
usefulness for detecting centrality effects.

(3) How do statistical centrality indices relate to each other in a large-scale assessment context, 
where raters used rating scales differing in length to evaluate examinee performance on a set of 
performance tasks?

We addressed the first two research questions using specifically designed simulation studies. The third 
question was examined reanalyzing real data from a speaking performance assessment.

Simulation study 1: number of examinees and criteria

Design

This simulation study aimed to answer the first research question: What is the impact of the number of 
examinees and criteria, respectively, on the correlation between the statistical indices and ω as 
introduced in Equation (3)? In the present study, ω represented the true magnitude of rater centrality; 
therefore, this is tantamount to the question: What is the indices’ sensitivity for detecting centrality 
effects under systematically varied conditions?

Building on previous rater effect studies (e.g., Jin & Wang, 2018; Wind & Sebok-Syer, 2019), we 
created a simulation design involving two factors: (a) the number of examinees, with two levels (500 or 
1,000 examinees), and (b) the number of scoring criteria, with three levels (two, three, or four criteria). 
The criterion difficulties were set as follows: –0.25 and 0.25 (two criteria), –0.5, 0, and 0.5 (three 
criteria), and –0.75, –0.25, 0.25, and 0.75 (four criteria).

We held the following characteristics constant across the six combinations of factor levels: Ratings 
were assigned by 25 raters using a five-category scale (from 0 = low to 4 = high) with thresholds fixed 
at –0.75, –0.25, 0.25, and 0.75. Each examinee provided a single performance, and two raters scored 

Table 2. Spiral rating design used in simulation study 1.

Examinee group Rater 1 Rater 2 Rater 3 . . . Rater 24 Rater 25

Group 1 ✔ ✔
Group 2 ✔ ✔
. . . . . .
Group 24 ✔ ✔
Group 25 ✔ ✔

Each ✔ designates observed scores (ratings). Empty cells indicate missing ratings.
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each performance, following an incomplete, spiral rating design (Jin & Wang, 2018; see also Eckes,  
2015; Wind & Jones, 2019). Examinees were divided into 25 equally sized groups. As illustrated in 
Table 2, Group 1 was scored by Raters 1 and 2; Group 2 was scored by Raters 2 and 3; and so on.

Each rater in the 500-examinees condition assigned ratings to 40 performances. Hence, for a given 
rater in this condition, the number of ratings varied between 80 (two criteria) and 160 (four criteria). 
In the 1,000-examinees condition, each rater assigned ratings to 80 performances; thus, the number of 
ratings per rater was much higher, varying between 160 (two criteria) and 320 (four criteria).

Based on the FM-SC rating scale version, rater severity values were sampled from a normal 
distribution with mean 0 and variance 0.25; also, rater centrality values (i.e., true ω values) were 
sampled from a lognormal distribution with mean 0 and variance 0.25 (Levy & Mislevy, 2016; Lunn 
et al., 2013). Table 3 presents the resulting values for raters’ severity and centrality, ordered by 
centrality from high to low. The severity values ranged from 1.09 (Rater 23) to –1.21 (Rater 7), with 
M = 0 (SD = 0.51); the centrality values ranged from 3.69 (Rater 6) to 0.17 (Rater 22), with M = 1.31 

Table 3. Rater severity and centrality values used in the 
simulation studies.

Rater Severity (αj) Centrality (ωj)

6 –0.60 3.69
9 0.69 3.21
14 0.15 2.45
11 –0.09 2.30
19 0.16 2.21
4 –0.13 2.18
2 0.06 2.06
25 –0.47 1.71
18 0.00 1.65
16 0.63 1.16
10 –0.33 1.04
3 0.46 1.00
23 1.09 0.97
13 0.20 0.97
15 0.07 0.95
17 –0.34 0.90
21 –0.05 0.89
7 –1.21 0.76
24 0.38 0.58
1 –0.57 0.53
12 –0.20 0.52
8 0.78 0.33
20 0.10 0.33
5 –0.72 0.27
22 –0.05 0.17

Raters are ordered by centrality values, from high (cen
trality) to low (extremity).

Table 4. Design for simulation study 1.

Factors Level(s) Parameter setting                                    

Manipulated
Number of examinees (1) 500 θn ~ N(0, 1)

(2) 1,000 θn ~ N(0, 1)
Number of criteria (1) 2 β1 = –0.25, β2 = 0.25

(2) 3 β1 = –0.5, β2 = 0, β3 = 0.5
(3) 4 β1 = –0.75, β2 = –0.25, β3 = 0.25, β4 = 0.75

Held constant
Number of scale categories 5 τ1 = –0.75, τ2 = –0.25, τ3 = 0.25, τ4 = 0.75
Number of raters 25 αj ~ N(0, 0.25), ωj ~ lognormal(0, 0.25)
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(SD = 0.94). In both simulation studies, severity and centrality values were held constant across 
conditions. Table 4 summarizes our Simulation Study 1 design in terms of the factors, levels, and 
parameter settings used.

Under each unique combination of factors (simulation conditions), we generated 100 replications. 
We computed rater infit statistics (MSW) and residual–expected correlations (rres,exp) for each replica
tion following the rating scale FM-S specified in Equation (1). Likewise, building on the rater-related 
partial credit facets model (Equation (2)), we computed rater threshold SD statistics (SD(τjk)). We ran 
the rating scale and partial credit FM-S analyses using the R package TAM (Test Analysis Modules; 
Robitzsch et al., 2020) with marginal maximum likelihood estimation (MMLE).1 Finally, we also 
computed the raw score SD statistic (SDobs) to compare with model-based centrality indices.

Results

Table 5 presents the findings from the correlation analyses. As expected, the correlations for MSW, 
rres,exp, and SDobs were consistently negative and the correlations for SD(τjk) were consistently positive. 
Overall, the mean correlations were strong, and they were stronger still for the large sample condition. 
The number of criteria involved seemed to have less impact on the correlations’ magnitude, particu
larly for the infit index.

Figure 1 displays the corresponding boxplots for the 500-examinees condition (upper panel) and 
the 1,000-examinees condition (lower panel). For ease of presentation, along the vertical dimension, 
the magnitude of the correlations between ω and MSW, rres,exp, and SDobs, respectively, is shown in 
absolute values.

The boxplots demonstrate that the rater threshold SD index comes with some outlying or extreme 
correlations when the number of criteria is low (i.e., two or three criteria). This finding contrasts with 
the other indices, especially with the rres,exp index. However, when the scoring rubric includes four 
criteria, the rater threshold SD index manifests the overall smallest dispersion of correlations (see also 
the correlation SD values in Table 5). Of course, the number of criteria used when scoring examinee 
performances restricts the possible range of threshold values. This (trivial) dependency should be 
considered when interpreting rater threshold SD index values as evidence of rater centrality for a given 
real data set.

Table 5. Means and standard deviations of correlations between rater centrality indices and centrality parameter ωj in simulation 
study 1.

Statistic 500 examinees 1,000 examinees

2 criteria 3 criteria 4 criteria 2 criteria 3 criteria 4 criteria
Infit (MSW)

M –.81 –.84 –.81 –.88 –.90 –.89
SD 0.05 0.05 0.05 0.03 0.03 0.03
Mdn –.82 –.84 –.82 –.88 –.90 –.89

Residual–expected correlation (rres,exp)
M –.87 –.91 –.93 –.91 –.93 –.95
SD 0.04 0.02 0.02 0.02 0.02 0.01
Mdn –.87 –.91 –.93 –.91 –.94 –.95

Standard deviation of rater thresholds (SD(τjk))
M .83 .92 .96 .95 .97 .98
SD 0.13 0.09 0.01 0.06 0.01 0.01
Mdn .90 .95 .96 .96 .97 .98

Standard deviation of observed scores (SDobs)
M –.84 –.87 –.88 –.88 –.89 –.90
SD 0.05 0.04 0.04 0.03 0.03 0.02
Mdn –.84 –.87 –.88 –.88 –.90 –.91

Under each condition of the 2 (examinee sample size) × 3 (number of scoring criteria) factorial design, correlations were computed 
based on 100 replications.
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Figure 1. Correlations (absolute values) between four centrality indices and centrality parameter ωj across different numbers of 
scoring criteria and two examinee samples (simulation study 1).
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Simulation study 2: criterion difficulty differences

Design

This simulation study aimed to answer the second research question: What is the impact of the 
criterion difficulties’ range on the correlation between the statistical indices and ω? In particular, we 
examined the assumption that the rater infit index fails to detect centrality effects when the criterion 
difficulties are widely dispersed. Therefore, this study also explained the puzzling observation of infit 
values greater than 1 when the data demonstrate centrality effects, as sometimes reported in the 
literature (Myford & Wolfe, 2004; Wolfe et al., 2000).

For answering this research question, we created a simulation design involving a single factor: The 
amount of dispersion between the criterion difficulties, with three range levels (low, medium, and 
high). We considered four criteria. Under the low-level condition, the difficulty of the first two criteria 
was fixed at –1, and the difficulty of the other two criteria was fixed at 1. The medium- and high-level 
conditions were defined by difficulties fixed at –1.5 vs. 1.5 and –2 vs. 2. All other settings were identical 
to Simulation Study 1, except for the examinee sample size; that is, we considered the 1,000-examinees 
condition only. Table 6 summarizes our Simulation Study 2 design in terms of the factors, levels, and 
parameter settings used.

Also, under each of the three range level conditions, we conducted a total of 100 replications. For 
each replication, we computed the model-based statistical indices using TAM (Robitzsch et al., 2020) 
and, finally, correlated the resulting index values and the raw score SD statistics with rater centrality 
(ω) values.

Table 6. Design for simulation study 2.

Factors Level(s) Parameter setting

Manipulated
Range of criterion difficulties (1) Low β1 = –1, β2 = –1, β3 = 1, β4 = 1

(2) Medium β1 = –1.5, β2 = –1.5, β3 = 1.5, β4 = 1.5
(3) High β1 = –2, β2 = –2, β3 = 2, β4 = 2

Held constant
Number of examinees 1,000 θn ~ N(0, 1)
Number of score categories 5 τ1 = –0.75, τ2 = –0.25, τ3 = 0.25, τ4 = 0.75
Number of raters 25 αj ~ N(0, 0.25), ωj ~ lognormal(0, 0.25)

Table 7. Means and standard deviations of correlations between 
centrality indices and and centrality parameter ωj in simulation study 2.

Statistic Range of criterion difficulties

Low Medium High

Infit (MSW)
M –.71 –.04 .60
SD 0.08 0.17 0.12
Mdn –.73 –.03 .61

Residual–expected correlation (rres,exp)
M –.98 –.98 –.98
SD 0.01 0.01 0.01
Mdn –.98 –.98 –.98

Standard deviation of rater thresholds (SD(τjk))
M .98 .98 .98
SD 0.01 0.01 0.01
Mdn .98 .98 .98

Standard deviation of observed scores (SDobs)
M –.93 –.95 –.96
SD 0.02 0.01 0.01
Mdn –.93 –.95 –.96

Under each of the three criterion difficulty ranges, correlations were 
computed based on 100 replications (examinee sample size was 
1,000; number of scoring criteria was 4).
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Results

The mean correlations (and medians) presented in Table 7 are again consistently negative for rres,exp 
and SDobs, and consistently positive for SD(τjk); also, the absolute values of correlation statistics are 
close to unity for rres,exp and SD(τjk).

The MSW index correlations demonstrate a completely different pattern: The mean correlations 
increase from –.71 under the low-level condition, a near-zero value under the medium-range level, 
and a positive value of .60 under the high-range level. Thus, all other things being equal, the more the 
criteria differ in their difficulties, the higher the infit values. This finding implies a complete reversal of 
this index’s intended interpretation. Under such conditions, rater centrality would no longer be 
indicated by smaller MSW values, particularly values much smaller than the expected value (i.e., 
1.0); instead, centrality effects would be indicated by higher MSW values, particularly values much 
greater than the expectation. Also, the relatively high correlation SD values show that correlations vary 
considerably within each of the three simulation conditions. By contrast, the corresponding SDs for 
the other indices stay close to zero.

The boxplots displayed in Figure 2 illustrate how much the correlations differ between centrality 
indices across range level conditions. The rres,exp, SD(τjk), and SDobs indices provide highly consistent 
conclusions regarding the presence of rater centrality effects, irrespective of the extent to which the 
criterion difficulties differ from each other. The situation for the MSW index is strikingly different: The 
correlations’ strength and direction depend heavily on the range of criterion difficulties. Moreover, 
within each of the three range levels, the correlations show a great deal of variability.

Figure 3 displays the infit distributions for five selected raters under each criterion difficulty range 
for illustrative purposes, demonstrating that high centrality may be associated with infit values much 
greater than the expected value of 1.0. In the simulation, of all the 25 raters, Rater 6 had the strongest 
tendency toward centrality (ω = 3.69, see Table 3). Under the low-range condition, this rater’s mean 
infit value stayed somewhat below 1.0 (M = 0.90, SD = 0.07, Mdn = 0.90). However, under the 
medium-range condition, the vast majority of values fell above 1.0 (M = 1.17, SD = 0.09, Mdn = 1.17). 

Figure 2. Correlations between four centrality indices and centrality parameter ωj across three levels of criterion difficulty range 
(simulation study 2).
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Finally, under the high-range condition, all infit values stayed well above 1.0, with some 30% of these 
values greater than 1.5 (M = 1.45, SD = 0.12, Mdn = 1.44). There is a similar progression of infit values 
across conditions for another rater with heightened centrality: Rater 2 (ω = 2.06).

Illustrating the converse case, Figure 3 also shows the infit values for two raters, Rater 7 (ω = 0.76) 
and Rater 22 (ω = 0.17), tending toward the scale’s extreme categories. The mean infit values 
monotonically decrease across conditions for both raters, even falling below 1.0 under the high- 
range condition. This finding suggests that low infit values indicate extremity–quite in contrast to 
the commonly intended interpretation of the rater infit statistic.

Real-data study: TestDaF speaking assessment

Instrument and procedure

The Test of German as a Foreign Language (TestDaF, Test Deutsch als Fremdsprache) is officially 
recognized as a language exam for international students applying for entry to higher education 
institutions in Germany (Eckes & Althaus, 2020; for a review, see Norris & Drackert, 2018). The 
TestDaF speaking section assessed an examinee’s ability to communicate appropriately in typical 
situations of university life, utilizing the Simulated Oral Proficiency Interview (SOPI) format (Kenyon,  
2000). Thus, the speaking section was administered via audio-recording equipment using prerecorded 
prompts and printed test booklets.

The performances of 1,347 examinees on nine speaking tasks were independently scored by two out of 
31 raters (26 women, 5 men) using a detailed scoring rubric. Each task was designed to target one of three 
increasingly higher German language proficiency levels, called TestDaF levels (TestDaF-Niveaus; TDN 3, 
TDN 4, and TDN 5). For scoring examinee performances on the three tasks targeting the highest level 
(TDN 5), raters used a four-category rating scale (“TDN 5 scale,” for short, with categories below TDN 3, 
TDN 3, TDN 4, and TDN 5; coded from 0 to 3). Regarding performances on the three TDN 4 tasks, raters 

Figure 3. Infit values for five raters and three levels of criterion difficulty range (simulation study 2).
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used a three-category rating scale (“TDN 4 scale,” with categories below TDN 3, TDN 3, and TDN 4; 
coded from 0 to 2). Finally, for performances on TDN 3 tasks, raters used a two-category (dichotomous) 
rating scale (with categories below TDN 3 and TDN 3); this scale is not considered further.

Data analysis

The TestDaF speaking data had been analyzed before in a different research context (Eckes, 2005). 
Since the present study focused on the centrality indices’ utility considering rating scales differing in 
length, we separately reanalyzed the TDN 5 and TDN 4 data. As in the simulation studies before, we 
ran the rating scale and partial credit FM-S analyses using the R package TAM (Robitzsch et al., 2020) 
with MMLE. For each dataset, we computed the three model-based indices (MSW, rres,exp, SD(τjk)) and 
the raw score SD index (SDobs).

Results

Table 8 presents the correlations between the three model-based centrality indices and SDobs 
computed separately for the TDN 5 and TDN 4 scales. Across scale types, a highly similar pattern 
of intercorrelations emerged: The infit statistic was uncorrelated with the residual-expected corre
lation and the SDobs index, but moderately (and negatively) correlated with the SDτ index. The 
other three correlations were moderately high, statistically significant, and in the expected 
direction.

Between-scale type correlations (i.e., same-index correlations between TDN 5 and TDN 4 index 
values) were insignificantly low for the infit index, r(31) = .09, ns. By contrast, the correlations for the 
remaining three indices were statistically significant and moderately high: r(31) = .36, p < .05 for 
rres,exp, r(31) = .57, p < .01 for SDτ, and r(31) = .76, p < .01 for SDobs. Thus, specific to the infit index, the 
magnitude of centrality effects observed along the TDN 5 scale was not consistently related to the 
magnitude of centrality effects along the shorter TDN 4 scale.

Table 8. Pearson correlations between model-based rater cen
trality indices and raw score SD statistics for two different 
rating scales in the real-data speaking study.

MSW rres,exp SDτ

Four-category rating scale
rres,exp .08
SDτ –.68** –.71**
SDobs .32 .57** –.60**

Three-category rating scale
rres,exp –.12
SDτ –.60** –.65**
SDobs .18 .38* –.58**

MSW = information-weighted mean-square fit statistic (infit) 
based on the FM-S rating scale model; rres,exp = Pearson 
correlation between expected scores and residuals based 
on the FM-S rating scale model; SDτ = standard deviation 
of the Rasch-Andrich rater thresholds based on the FM-S 
(rater-related) partial credit model. SDobs = standard devia
tion of observed scores. 

* p < .05. ** p < .01.
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Discussion

Rater centrality effects are highly resistant to change, for example, resistant to rater training targeted at 
reducing their impact on the assessment outcomes (e.g., Barrett, 2001; Houston & Myford, 2009; 
Knoch, 2011). Moreover, rater centrality, like rater severity, tends to manifest itself in a wide variety of 
assessment situations; that is, its occurrence does not depend on the presence of some specific 
situational feature or contextual cue. In this respect, centrality stands out from more context- 
specific rater effects, contingent on a particular context or rating situation, including halo errors, 
rater biases, or differential rater functioning (Myford & Wolfe, 2003; Wind & Ge, 2021; Wolfe & Song,  
2016).

Given their pervasive and robust nature, it seems evident that centrality effects should be detected, 
measured, and accounted for in some way or other to ensure a sufficiently high level of rating quality 
(Eckes, 2015; Wind & Peterson, 2018). In two simulation studies, the present research evaluated three 
model-based statistical indices that have been proposed for centrality detection purposes (Myford & 
Wolfe, 2004; Wolfe & Song, 2015, 2016; Wu, 2017): weighted rater infit statistics (MSW), residual– 
expected correlations (rres,exp), and rater threshold SDs (SD(τjk)). We also examined the standard 
deviation of a given rater’s observed score distribution (SDobs), which is easy to calculate and readily 
available to practitioners (Johnson et al., 2009).

We studied each of these indices’ sensitivity to centrality effects through comparisons with rater 
centrality values sampled from a latent continuum using an extended facets model – the facets model– 
severity and centrality (FM-SC; Jin & Wang, 2018). The FM-SC builds on the framework of many-facet 
Rasch measurement (Linacre, 1989). This framework has been adopted in various educational and 
psychological measurement contexts (e.g., Aryadoust et al., 2020; Eckes, 2015, 2019; Engelhard & 
Wind, 2018, 2021; McNamara et al., 2019). Specifically, the FM-SC extends the previous facets models 
by simultaneously accounting for rater severity and rater centrality. Based on the FM-SC, we sampled 
severity values from a normal distribution and centrality values from a lognormal distribution and 
held these values constant over simulation conditions.

The first simulation study addressed how well the statistical indices recovered the central tendencies. 
Systematically varying the number of examinees (500 or 1,000) and the number of scoring criteria (2, 3, 
or 4), we found, in the majority of cases, strong correlations with the true centrality measures (ω values). 
The second simulation study focused on the impact the range of criterion difficulties would have on the 
statistical indices’ sensitivity to centrality. In particular, considering some researchers’ observations of 
MSW values greater than 1.0 for raters exhibiting central tendencies (Myford & Wolfe, 2004; Wolfe et al.,  
2000), we examined the correlations between the indices and ω values under conditions of low, medium, 
and high ranges of criterion difficulty differences. Whereas the rres,exp, SD(τjk), and SDobs indices 
remained mostly unaffected by these variations, consistently manifesting very high degrees of sensitivity 
to centrality, the MSW statistic showed a steady increase with increasing ranges. Furthermore, the higher 
the differences between the criterion difficulties, the more the correlations between MSW and ω were 
shifted toward the positive end, becoming positive throughout when the difficulty range was high.

To illustrate, under the high-range condition, a rater simulated to exhibit strong central tendencies 
had MSW values around 1.5, whereas another rater simulated to exhibit extremity had MSW values 
averaging below 1.0. Hence, the rater infit statistic, MSW, does not seem suitable for detecting 
centrality or extremity reliably irrespective of the difficulty differences between criteria. In other 
words, whether central raters are associated with overfit (MSW < 1.0) or misfit (MSW > 1.0), depends 
(among other things) on the magnitude of differences between criterion difficulties. Therefore, 
the second simulation study provided strong support for Myford and Wolfe’s (2004) admonition to 
be cautious about interpreting rater infit values below 1.0, for example, below the common cut-score 
of 0.75, indicating rater centrality.

We also reanalyzed performance ratings gathered in a large-scale speaking assessment (Eckes,  
2005) to further probe the centrality indices’ functioning in a real-data context. Raters used rating 
scales differing in length designed to fit the proficiency level targeted by each speaking task. Findings 
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corroborated main conclusions from the simulation studies: The infit index (MSW) correlated incon
sistently with the other indices and proved uncorrelated across the two types of rating scales. The 
moderately strong and consistent correlations of the SDobs index with the two model-based indices 
rres,exp and SD(τjk) demonstrate some merit in computing the standard deviation of observed score 
frequency distributions for rater centrality detection. However, it should be kept in mind that using 
the SDobs index requires a representative sample of ratings for reliably diagnosing raters’ central 
tendencies (Wolfe & Song, 2016).

As a practical implication, detecting and measuring centrality effects can improve rater training and 
monitoring through providing individualized feedback to raters. This kind of feedback may help 
sensitize raters for possible central tendencies that otherwise go unnoticed (Houston & Myford, 2009; 
Knoch, 2011). Precise centrality detection is also relevant for developing efficient automated scoring 
systems (Shermis, 2016; Williamson et al., 2012; Wolfe, 2020). Such systems are typically calibrated 
using machine learning techniques based on performances previously scored by expert human raters. 
However, as Bridgeman (2013, p. 221) pointed out, “if the human raters are inconsistent and 
unreliable and/or if they overuse one or two points on the score scale, the machine cannot be 
effectively trained.” Thus, Wind et al. (2018) found that rater effects, including centrality effects, 
present in the ratings used to train an automated essay scoring system were replicated in the scores this 
system produced. Therefore, detecting raters exhibiting central tendencies and removing their ratings 
from the training set of performances will likely raise the scoring system’s efficiency.

Generally speaking, simulation studies are always constrained by the researchers’ decision on which 
characteristics to include as design factors, which factor levels to consider, and which characteristics to 
hold constant over conditions. Within the context of performance assessments, many factors (or 
facets) and their mutual relations directly or indirectly influence the final scores raters assign to 
examinees. The conceptual–psychometric framework discussed in Eckes (2015) gives a rough idea of 
the complexity involved. Therefore, it should be acknowledged that simulation studies like ours are 
limited in generalizability to some degree.

Our focus was on the impact the examinee sample size, number of scoring criteria, and range of 
criterion difficulty differences had on the sensitivity of statistical centrality indices. We selected two or 
three levels, respectively, for each factor, and held constant characteristics of the simulated assessment 
setting, in particular, the rating design (incomplete, spiral), the number of raters (25), the number of 
rating scale categories (5), and the magnitude of the category thresholds (ranging from –0.75 to 0.75). 
Instead of holding these characteristics constant, they may be included as design factors to examine 
their impact on the indices’ sensitivity in future research.

Furthermore, in operational scoring sessions, rater effects rarely come about in isolation. Instead, it 
is much more likely that multiple kinds of rater effects simultaneously impact on the scores assigned to 
examinees. Besides severity effects considered in our study, these may include halo effects, rater 
inaccuracy or randomness, and various forms of differential rater functioning as well as personal 
scoring preferences (Wang & Engelhard, 2019a, 2019b; Wind & Guo, 2019; Wolfe & Song, 2016). 
Therefore, another extension of our study could evaluate the performance of, and interrelations 
between, centrality indices under systematic variation of these combined effects’ magnitude and 
direction.

Our simulation studies created rating data following a spiral design yielding incomplete but 
connected data; the real-data speaking study used a double-scoring design yielding a similar data 
structure (Eckes, 2015; Engelhard & Wind, 2018). Due to practical constraints, designs like these, 
where not every rater scores every performance, are standard in operational, large-scale assessment 
programs. Nonetheless, systematically varying the type of rating design, simulating, for example, 
designs with different proportions of missing data and comparing these with complete rating data, can 
provide further insight into the sensitivity of rater effect detection.
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Following such a simulation approach, Stafford et al. (2018) showed that the extent of missingness 
did not substantially influence the performance of severity and centrality indices, that is, Rasch model- 
based rater location and rater threshold SD, respectively. Considering double-scoring designs, they 
found high rates of correctly detecting severe and central raters even when the proportion of 
examinees scored by a maximum of two randomly selected raters was as low as 5%.

Building on Stafford et al.’s simulation study, Wind and Jones (2019) focused on specific types of 
rating designs common in performance assessments, including systematic links, anchor performances, 
and spiral designs. They explored the designs’ impact on the sensitivity of rater severity and centrality 
detection. Findings suggested that it is possible to identify rater effects regardless of the type of 
incomplete rating design. Wind and Ge (2021) arrived at similar conclusions regarding DRF detection 
in sparse assessment networks. Therefore, we expect our findings to hold under various rating designs 
with different proportions of missing data based on these studies.

Another deliberate decision was to construct the centrality dimension using the FM-SC (Jin & 
Wang, 2018). This model has demonstrated its practical utility in several large-scale language assess
ments (Eckes & Jin, 2021, 2021a; Jin & Wang, 2018). Considering the statistical expertise currently 
required to design and run an FM-SC analysis, it seems obvious that small-scale assessment situations, 
such as classroom-based assessments, are not the main application context. Nonetheless, detecting 
rater centrality effects using a direct modeling approach has unique advantages. Even though the 
rres,exp and SD(τjk) indices appear to do a good job under many assessment conditions, different from 
the FM-SC, these indices are not designed to provide examinees with scores taking simultaneously 
into account between-rater differences in severity and centrality. Moreover, examining rater severity 
and centrality estimates in conjunction may greatly help monitor raters and provide detailed feedback 
on their scoring behavior in operational assessment programs.

Conclusion

We have shown that the usefulness of the rater infit index (MSW) for reliably identifying raters 
exhibiting central tendencies is highly questionable. Therefore, when deciding on a centrality detec
tion statistic, we would advise researchers not to rely on rater infit statistics but instead use the model- 
based rres,exp or SD(τjk) indices. If the data requirements are met, using the SDobs index may also be 
a reasonable option. If the research interest goes beyond mere centrality detection and includes 
estimating examinee proficiencies freed as far as possible from the impacts of rater severity and 
centrality, the FM-SC’s direct modeling approach (Jin & Wang, 2018) has much to recommend it.

Note

1. We used the tam.mml.mfr function in TAM (Robitzsch et al., 2020), implementing marginal maximum like
lihood estimation of parameters because this technique is less subject to estimation bias (von Davier, 2016; Wu 
et al., 2016; for a discussion of different estimation techniques, see Linacre, 2004, 2021). The TAM code for 
Simulation Study 1 and a simulated dataset are available on the Open Science Framework: https://osf.io/m4gbr/
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